Расчет радиаторов отопления

Отличия алюминиевых и биметаллических радиаторов

Чтобы понять, какие радиаторы отопления лучше, биметаллические или алюминиевые, нужно разбираться в их отличиях. Для начала стоит сказать, что теплоотдача одной секции алюминиевого изделия составляет 175-200 Вт, а вес 1,2-1,45. Что касается биметаллического устройства, то вес одной секции равен 1,36-1,92 кг, а теплоотдача доходит до 200 Вт. Гарантия на биметаллические изделия оставляет 10-15 лет, а гарантийный срок службы алюминиевых – 3-10 лет.

Радиатор алюминиевый имеет следующие особенности:

  • нуждается в чистом теплоносителе, поэтому подходит для бесперебойной работы в автономной отопительной системе частного дома, а также для городских квартир с автономным отоплением (это обеспечивает защиту от протечек и гидроударов, а также возможность контролировать давление в трубах и качество теплоносителя);
  • аккуратный внешний вид и приемлемая цена делают эту продукцию лидером продаж;
  • срок эксплуатации доходит до 25 лет;
  • полностью изготавливаются из алюминия;
  • межосевое расстояние равно 200, 350, 500 и 850 мм;
  • некоторые модели отличаются конструкцией.

Биметаллические изделия имеют такие характеристики:

  • производятся из двух сплавов (внутренняя часть из нержавейки, а внешний слой из алюминия);
  • по долговечности и надежности занимают второе место после чугунных устройств;
  • высокая теплоотдача и надежность, поскольку нержавейка обладает химической стойкостью, а алюминий хорошей теплопроводностью;
  • подходит для установки на централизованные отопительные системы, поскольку стальные каналы не портятся от теплоносителя с высокой щелочностью или кислотностью;
  • прочная сталь усиливает всю конструкцию, что обеспечивает устойчивость к гидроударам и возможность выдержать высокое рабочее давление;
  • бывают в виде отдельных секций или неразборных блоков (при необходимости можно добавлять блоки или секции);
  • алюминиевый корпус отлично излучает тепло, а эмалевое покрытие выполняет декоративные функции.

Какой радиатор лучше выбрать

Теперь поговорим о том, как выбрать лучшие секционные батареи между биметаллическими и алюминиевыми изделиями.

Для этого сравним их по основным характеристикам:

  1. Биметаллические и алюминиевые батареи имеют практически одинаковую теплоотдачу, которая составляет 200 Вт. Последние изделия быстрее нагреваются и быстрее остывают, первые – дольше держат тепло, но имеют более длительный нагрев.
  2. Устойчивостью к высокому давлению батареи из алюминия не могут похвастаться. Они могут выдержать не больше 16 бар, поэтому при гидроударах могут деформироваться и даже лопнуть. Изделия со стальным слоем выдерживают до 40 бар, что оптимально для централизованных систем отопления.
  3. Алюминий реагирует на химические соединения, содержащиеся в воде, и подвержен кислородному окислению. Поэтому в централизованных отопительных системах металл быстро испортит коррозия. Биметаллические устройства надежно защищены от коррозии внутренним слоем из нержавейки.
  4. По устойчивости к высоким температурам тоже выигрывают приборы с двух сплавов, потому что выдерживают до 130 градусов, в то время как секции из алюминия в состоянии выдержать только 110 градусов.
  5. Гарантийный срок службы приборов из алюминия доходит до 10 лет, а двухсплавной продукции – до 20 лет.
  6. Особенности подключения алюминиевых радиаторов и биметаллических устройств практически не отличаются. Но в любом случае монтаж стоит доверить профессионалам.
  7. Стоимость двухсплавных приборов на 20-30 процентов выше.

Тепловая отдача отопительных приборов на примере биметаллических батарей

В пределах одной ниши изделий табличные данные могут существенно варьироваться. Эти показатели зависят от нескольких определяющих факторов, включая модели батарей, толщину стенок и марку металла. Сравнительные показатели тепловой отдачи для моделей от разных производителей сведены в таблицу 3.

Таблица 3

Модификация/ параметры Grandi 500 Tenrad 350 Tenrad 500 Альтермо РИО АльтермоЛРБ Style 350 Style 500
Формат (высота, ширина, глубина в мм) 580х80х80 425х80х80 550х80х77 570х82х80 575х85х80 425х80х80 575х80х80
Тепло-проводность Вт 167 120 160 166 169 125 268
Рабочее давление, бар 16 24 24 18 18 35 35

Реальная теплоотдача секции радиатора

Как уже указывалось, мощность (теплоотдача) радиаторов обязательно указывается в их техническом паспорте. Но почему же спустя несколько недель после установки отопительной системы (а то и раньше) вдруг оказывается, что вроде бы и котёл греет как надо, и батареи установлены по всем правилам, а в доме холодно? Причин снижения реальной теплоотдачи радиаторов может быть несколько.

Чугунный радиатор Viadrus (Чехия)

Приведем показатели поверхности нагрева и заявленной теплоотдачи для наиболее распространённых моделей чугунных радиаторов. Эти цифры в дальнейшем понадобятся нам для примеров расчёта реальной мощности секции радиатора.

Тип радиатора Поверхность нагрева, м2 Теплоотдача, Вт м2 (90/20°С)
М-140-АО 0,299 175
М-140-АО-300 0,17 108
М-140 0,254 155
М-90 0,2 130
РД-90с 0,203 137

Как уже сказано, при использовании таких радиаторов для средне-, низкотемпературных систем отопления (например, 55/45 или 70/55) теплоотдача чугунного радиатора отопления будет меньше заявленного в паспорте. Поэтому чтобы не ошибиться с количеством секций, его фактическую мощность нужно пересчитывать по формуле:

Q = K х F х ∆ t

где:

К — коэффициент теплопередачи;

F — площадь поверхности нагрева;

∆ t — температурный напор °С (0,5 х ( t вх. + tвых. ) — tвн.);

при этом

tвх – температура входящей в радиатор воды,

tвых – температура воды на выходе из радиатора;

tвн.- средняя температура воздуха в помещении.

При температуре входящего теплоносителя 90 гр., выходящего 70 гр., а температуры в комнате 20 гр.

∆ t = 0,5 х (90 + 70) – 20 = 60

Коэффициент К для наиболее распространённых чугунных радиаторов можно посмотреть здесь:

Тепловой напор 50-60 60-70 70-80 80-100
Коэффициент теплопередачи (К)
Радиаторы чугунные высокие 7.0 7.5 8.0 8.5
Радиаторы чугунные средние 6.2 6.4 6.6 6.8

Даже реальная теплоотдача одной секции среднего чугунного радиатора с площадью 0,299 кв. м (М-140-АО) при температуре входящей воды 90 гр., а выходящей — 70 гр будет отличаться от заявленной. Это происходит из-за теплопотерь в подводящих трубах, и по другим причинам (например, сниженный напор), предусмотреть которые в лабораторных условиях невозможно.

Итак, теплоотдача секции площадью 0,299 кв. м. при температуре 90/70 составит:

7 х 0,299 х 60 = 125,58 Вт

Учитывая, что теплоотдача всегда указывается с некоторым запасом, умножим эту цифру на 1,3 (этот коэффициент используется для большинства чугунных радиаторов) и получаем: 125,58 х 1,3 = 163, 254 Вт – в сравнении с заявленной 175 Вт.

Еще больше будет разницы в цифрах, если входящая в радиатор вода не нагревается выше 70 град. (а выходящий теплоноситель, соответственно, остывает до 60-50 град.), поэтому перед тем как покупать новые радиаторы, желательно узнать реальные тепловые параметры своей отопительной системы.

Как сэкономить на отоплении?

Первое правило разумной экономии – это запомнить, на чём экономить нив коем случае нельзя! Радиаторы всегда нужно брать с запасом, ведь снизить температуру в помещении можно с помощью уменьшения температуры воды в системе или с помощью запорных кранов. А вот если реальная теплоотдача окажется ниже заявленной производителем – в комнатах будет в лучшем случае прохладно. Кстати, неплохие по большинству параметров чугунные радиаторы Коннер в условиях реальной эксплуатации имеют теплоотдачу процентов на 20-25 ниже, чем указано в паспорте

Радиатор 1К60П-500 (Минск)

Как уже указывалось, теплоотдача может отличаться от заявленной и из-за того, что температура воды в отопительной системе гораздо ниже «стандартной», то есть той, при которой проводились заводские испытания, так как заявленная мощность излучения достижима лишь при лабораторных условиях. Представьте себе, что секция радиатора МС-140 (указана мощность 160 Вт) при температуре воды 60/50 град. (а больше «котёл не тянет»!) будет выдавать мощность не более 50 Вт. И если вы поверили техническому паспорту и решили поставить 5 отопительных секций, то вместо 800 Вт (160 х 5) вы получите всего 250.

Однако предусмотреть эту ситуацию и даже воспользоваться ею вполне возможно! Исходя из расчётов, приведённых выше, чем ниже ∆ t (то есть температура воды-теплоносителя), тем тем большей должна быть излучающая поверхность радиатора. Так при ∆ t 60 для излучения 1 кВт достаточно радиатора высотой 0,5 м х 0,520 м, а при ∆ t 30 — 0,5 м х 1,32 м.

«Традиционный» чугунный радиатор МС-140М2

Свариваем конструкцию

Этот процесс выполняют так:

  1. Трубы выставляют своими руками так, чтобы между ними поместились вырезанные 10-см круглые трубки. Отверстия должны «смотреть» в стороны. Концы профильных труб должны находиться на одной прямой линии.
  2. Под круглые трубки подставляют деревянные планки или другие предметы (например, гаечный ключ) так, чтобы первые разместились и плотно прилегли к сделанным отверстиям.
  3. Прихватывают сваркой 25-мм трубки. В двух или трех местах трубки приваривают к профильным трубам. Если выполняются две прихватки, то они должны располагаться так, чтобы линия между ними представляла диаметр трубки. Если планируется сделать три прихватки, то их равномерно рассредоточивают по длине трубки. Выбрав один из этих способов, фиксируют каждый конец перемычки.
  4. Ставят конструкцию в вертикальное положение и приступают к приварке перемычек профильной трубы. Специалисты рекомендуют сначала выполнить тонкий шов с помощью малого тока. Благодаря этому заполнятся все щели. Далее нужно сделать толстый основной шов. Делают его, увеличив сварочный ток. Этот совет в первую очередь адресован новичкам. Профессионалы могут сразу сделать красивый, прочный и надежный толстый шов. Так проваривают швы на каждом конце перемычки.
  5. Очищают внутреннее пространство сделанной конструкции от металлического мусора и шлака.
  6. Прикладывают заглушки (вырезанные из листового металла прямоугольники или квадратики) к торцам профильных труб и прихватывают их так, как прихватывали перемычки.
  7. Приваривают заглушки к торцам основания радиатора. В конце получится черновая конструкция, в которой еще нужно сделать отверстия для впуска и выпуска воды.
  8. Обрабатывают сварочные швы. Части швов, которые очень выступают, сбивают молотком, который мог лежать возле радиаторного ключа. Вместо молотка может подойти большой гаечный ключ. Далее каждый шов обрабатывают болгаркой. Благодаря шлифовке они станут гладкими.
  9. Отверстия в почти готовом радиаторе сверлят в зависимости от того, как он будет подключаться. Вообще желательно сделать четыре отверстия. Ненужное закроется заглушкой. Затем, в случае необходимости, оно будет использовано. Отверстия можно делать в торцах труб или в нижней и верхней стороне созданной конструкции. Опять же все зависит от особенностей подключения. Если дырочки должны быть в торцах профильных труб, то их не делают по центру торцов. Верхние отверстия размещают ближе к верху конструкции, нижние — ближе к низу.
  10. К сделанным отверстиям приваривают разрезанные пополам муфточки на 15 мм. Сначала их прихватывают, а потом делают основной сварочный шов. Внизу вместо муфточек можно использовать переходные колена. Конечно, на конце каждого из них должна быть внутренняя резьба.
  11. Зачищают все швы, заглушают три отверстия и через последнее наливают воду в радиатор . Вода должна поступать под давлением. Можно закачать воздух. В любом случае проверяют надежность швов. Если есть проблемные места, их обозначают и затем дополнительно проваривают, спустив перед этим воду. Если нет, то это хорошо.
  12. Чистят внешнюю поверхность. обрабатывают, а точнее моют ее обезжиривателем и красят термостойкой краской, которая стояла рядом с инструментами и радиаторным ключом.
  13. В одно из верхних отверстий устанавливают кран Маевского (ключ от него ставят в надежное и в то же время доступное место). Также можно зафиксировать запорную арматуру.

Влияние способов подключения и места установки на теплоотдачу радиаторов

При расчете фактической мощности радиаторов следует знать, что теплоотдача приборов также зависит и от способа размещения. Фактическая мощность, полученная в результате расчетов, показывает какое количество тепла радиатор отдаст при расчетных параметрах теплоносителя, грамотной схеме подключения, сбалансированной системе отопления, а также при установке открыто на стене или под окном без использования декоративных экранов.

Как правило, оконные проемы являются строительными элементами с максимальными потерями тепла вне зависимости от количества камер и прочих энергоэффективных показателей. Поэтому радиаторы отопления принято размещать в пространстве под окном. В таком случае радиатор, нагревая воздух в зоне установки, создает некую душирующую завесу вдоль окна, направленную вверх помещения и позволяющую отсекать поток холодного воздуха. При смешивании холодного воздуха с теплыми потоками от радиатора возникают конвективные потоки в помещении, которые позволяют увеличить скорость прогрева.

Рекомендуется устанавливать радиаторы шириной не меньше половины ширины оконного проема.

Еще одним требованием увеличить эффективность обогрева комнаты является подбор габарита радиатора относительно ширины оконного проема. Длину радиатора рекомендуется подбирать не мене половины ширины оконного проема. В противном случае будет велика вероятность образования холодных зон в непосредственной близости к окну и будет заметно снижена конвективная составляющая обогрева помещения.

Если в здании присутствует большое количество угловых комнат, то следует размещать такое количество приборов отопления, равное количеству наружных ограждающих конструкций.

Например, для помещения 1-го этажа рассматриваемого в качестве примера жилого дома площадью 8, 12 м2 следует предусматривать по 2 радиатора. Один располагается под оконными конструкциями, второй или у противоположного окна или у глухой стены, но в максимальном приближении к углу помещения. Таким образом, будет соблюден максимально равномерный прогрев всех комнат.

Если система отопления дома проектируется по вертикальной схеме, то прокладку стояков для подводки к радиаторам угловых комнат следует производить непосредственно в угловых стыках стен. Это позволит дополнительно прогревать наружные строительные конструкции и предотвратить отсыревание и порчу отделочных материалов в углах.

В случае установки радиаторов под окнами с использованием дополнительных декоративных элементов (экранов, широких подоконников) или установки в нишах для расчета фактической мощности отопительных приборов необходимо пользоваться следующими поправочными коэффициентами:

  • Узкий подоконник не перекрывает радиатор по глубине, но лицевая панель прибора отопления закрыта декоративным экраном (расстояние между стеной и экраном не менее 250 мм) – Ккорр=0,9.
  • Широкий подоконник полностью перекрывает глубину радиатора, декоративный экран закрывает лицевую панель (расстояние между стеной и экраном не менее 250 мм), но в верхней части оставлена щель, равная 100 мм по вертикали – Ккорр=1,12.
  • Широкий подоконник полностью перекрывает радиатор по глубине, дополнительные декоративные конструкции отсутствуют – Ккорр=1,05.

Из рассмотренных выше вариантов установки приборов отопления видно, что для того чтобы уровень конвекции не был снижен следует оставлять воздушные зазоры со всех сторон приборов отопления. Минимальными расстояниями от финишного уровня напольного покрытия и от подоконника до прибора отопления должно составлять не менее 100 мм, а зазор между стеной и задней поверхностью радиатора не менее 30 мм.

Различают одностороннее подключение радиаторов к системам отопления и разностороннее, когда трубопроводы подводят к прибору с противоположных сторон. Односторонний способ является наиболее экономичным и удобным с точки зрения дальнейшей эксплуатации приборов отопления. Подключение радиаторов с разных сторон немного увеличивает их теплоотдачу, но на практике этот способ используют при установке отопительных приборов более 15-ти секций или при подключении нескольких радиаторов в связке.

Теплосъем от радиаторов зависит также и от точки подвода подающего трубопровода. При подключении по схеме «сверху-вниз», когда горячая вода подводится к верхнему патрубку, а обратка к нижнему, теплопередача от радиатора увеличивается. При подключении «снизу-вверх» тепловой поток снижается, при этом прогрев радиаторов осуществляется неравномерно, а типоразмер приборов должен быть значительно увеличен для достижения расчетной мощности.

Обзор некоторых вариантов расчета

Существует множество способов, с помощью которых можно произвести расчетные работы, мы рассмотрим те из них, которые возможно произвести, не имея специального образования и профессиональных расчетных программ.

Простейший вариант

Это решение подойдет вам, если у вас есть план помещения, работы достаточно просты:

  • По чертежам определяете площадь каждого из помещений и помечаете в виде списка.
  • Далее необходимо разделить полученные цифры на коэффициент 1,8. Полученный результат и будет требуемым количеством секций. Конечно, этот вариант далек от идеала и не отличается точностью, но ориентировочные данные можно рассчитать.

Данный способ не очень хорош для алюминиевых радиаторов, так как они отличаются по своим показателям в зависимости от размера

По площади

Самый простой и широко распространенный вариант, о котором можно сказать следующее:

Чем больше размер помещения, тем больше необходимо секций радиатора для его отопления

  • Способ подходит только для комнат со стандартной высотой, которая может варьироваться в диапазоне от 240 до 280 см, для более высоких помещений нужно выбирать другой вариант расчетов, так как данная система не позволит получить точные данные.
  • В первую очередь необходимо измерить ширину и длину комнаты, после чего рассчитать ее площадь не составит особого труда.
  • Согласно строительных норм на один квадратный метр должно приходиться 100 Ватт мощности обогревательного элемента, то есть для обогрева 10 м2 необходим 1 кВт тепловой энергии.

Теплоотдача секции алюминиевого радиатора может варьироваться в зависимости от размера и конфигурации, эта таблица упростит расчет

По объему помещения

Этот способ позволяет провести более точные расчеты, его выполнение также не составляет большой сложности:

  • Кроме таких параметров как длина и ширина вам понадобится еще одно значение – высота, необходимо перемножить все три числа, и вы получите объем помещения в кубических метрах.
  • Согласно норм СНиП на один кубометр воздуха в помещении должно приходиться 0, 41 Ватт тепловой энергии. То есть вам необходимо умножить объем на 0,41 – полученный итог будет уже более точным отражением фактической потребности помещения в отоплении.
  • Этот вариант подходит для помещения с правильной конфигурацией, если же имеются выступы и ниши, то их объем необходимо рассчитать отдельно и прибавить к объему основной площади.

Высокие потолки не только добавляют пространство, но и заметно увеличивают требуемое количество секций в радиаторе

Использование таблиц

У каждого производителя есть таблица теплоотдачи алюминиевых радиаторов отопления, по которой можно без труда определить мощность той или иной модели. А в нормах СНиП есть специальные таблицы, по которым можно рассчитать количество элементов в зависимости от их мощности. Это очень удобный вариант проведения работ, который позволяет получать достаточно точные и корректные результаты.

Таблица теплоотдачи алюминиевых радиаторов показывает их характеристики при определенной температуре теплоносителя, если же показатели ниже, то и значения изменятся в меньшую сторону

Особенно удобно использовать готовую информацию в помещениях с высокими потолками, так как там цифры потерь тепла заметно увеличивается, таблица ниже показывает, сколько секций определенной мощности потребуется при той или иной высоте потолков в комнате.

Эта таблица составлена в соответствии с требованиями СНиП и поможет легко провести расчет для высоких помещений

Дополнительные факторы, которые следует учесть

Полученные результаты не учитывают всех особенностей помещения.

Поэтому следует использовать поправочные коэффициенты, вот самые важные и значимые из них:

  • При использовании окон из ПВХ полученный результат не нуждается в увеличении, более того, его можно уменьшить на 10%.
  • Если стены утеплены качественно, то редактировать результат не нужно, но если это сделано не очень хорошо, то поправка может составить от 10 до 40%.
  • Каждый оконный проем требует добавления 5% к необходимой мощности системы отопления.
  • Если помещение имеет две наружные стены, то на его отопление будет уходить гораздо больше тепловой энергии, поэтому следует использовать коэффициент 1,3.
  • Расположение радиатора имеет огромное значение, так как от этого зависит его теплоотдача, на схеме ниже наглядно показано, как изменяется эффективность отопления в зависимости от варианта установки.

Эта схема расскажет вам, как изменять полученные результаты в зависимости от того, как расположены радиаторы

Помните о том, что качественные радиаторы всегда стоят немало, цена хорошего изделия из алюминия довольно высока.

Информация

При строительстве или ремонте жилого помещения важнейшим вопросом является его обогрев. Расчет эффективной системы отопления – ответственная задача для строителя-теплотехника. Однако, можно самостоятельно сделать расчет радиаторов отопления по площади помещения с помощью онлайн калькулятора. Необходимо только ввести известные данные в программу.

Функции калькулятора

Калькулятор для расчета радиаторов отопления на квадратный метр или по мощности секций является онлайн программой и состоит из:

  • блока окон «Вид радиатора»;
  • десяти строк ввода данных;
  • блока окон «Тип подключения»;
  • четырех строк с выводом готовых расчетов.

Программа произведет расчет количества секций радиаторов отопления; тепловых потерь помещения; удельных теплопотерь помещения; количества тепла, выделяемого одной секцией. Всю полученную информацию можно сохранить в файле PDF или вывести на печать.

Принцип работы на калькуляторе

Для получения готовых расчетов следуйте нижеуказанному алгоритму:

Выберете необходимый вид радиатора. В строке ниже автоматически появится мощность одной секции выбранного вида радиатора, в ваттах.
В строках 2-4 укажите размеры комнаты: длину, ширину, высоту в метрах.
Выберете качество остекления.
Выберете площадь остекления (равна отношению площади окна к площади помещения), в %.
Укажите степень утепления.
Выберете климатическую зону – регион проживания.
Укажите количество внешних углов и стен комнаты.
Выберете вариант помещения, которое находится над комнатой.
Укажите температуру теплоносителя, в ℃

Это очень важно, например центральное отопление дает 70-80 градусов, а котел на твердом топливе если есть дома тёплый пол настраивают на 50-60
Выберете планируемый тип подключения.

После этого появится следующая информация:

  • Количество секций, в штуках.
  • Тепловые потери помещения, в ваттах.
  • Удельные теплопотери помещения, в Вт/м2.
  • Количество тепла, выделяемого 1 секцией, в ваттах.

Полезная информация

Важнейшими техническими характеристиками различных моделей радиаторов отопления являются:

  • Мощность секций радиатора. Чем больше мощность радиатора, тем выше теплоотдача и эффективность отопительного прибора.
  • Рабочее давление радиатора. Высокий порог данного параметра позволяет выдерживать гидравлические удары и перепады давления в системе, увеличивает срок службы изделия.
  • Материал и вес радиатора. Вид материала (металла, сплава) напрямую влияет на прочность и долговечность отопительного прибора, его коррозионную стойкость. Вес изделия важен при монтаже, особенно, если устанавливать радиаторы будет один человек.

На рынке радиаторов отопления присутствуют четыре основных вида: стальные, чугунные, алюминиевые и биметаллические радиаторы.

Стальные радиаторы – имеют хорошую теплоотдачу и относительно невысокую стоимость. Однако, они не достаточно устойчивы к гидроударам и высокому давлению, подвержены коррозии. Различают панельные и трубчатые радиаторы из стали.

Чугунные радиаторы – самый популярный и долговечный вид радиаторов в России для централизованного отопления. Обладают отличной теплоотдачей, стойкостью к коррозии и гидроударам. В то же время, радиаторы из чугуна долго нагреваются и долго остывают; имеют большой вес, что является недостатком при монтаже одним специалистом.

Алюминиевые радиаторы – одни из самых популярных современных видов радиаторов. Изготавливают литые и экструзионные радиаторы из алюминия

Отличаются высокой теплоотдачей и небольшим весом, что важно при установке приборов. При этом, они чувствительны к гидроударам и перепадам давления в системе отопления, быстро нагреваются и быстро остывают

Биметаллические радиаторы – обладают относительно лучшими характеристиками среди всех видов радиаторов. Изготавливаются из двух материалов: внешней алюминиевой оболочки и внутренних стальных или медных труб. Обладают высокой теплоотдачей и прочностью, хорошей стойкостью к коррозии и гидроударам, имеют сравнительно небольшой вес.

Справка

Радиатор отопления – отопительный прибор, конструктивно состоящий из отдельных элементов трубчатого или вытянутого вида – секций, с внутренними каналами, по которым циркулирует теплоноситель, как правило, вода. Тепло от радиатора отопления отводится конвекцией, излучением и теплопроводностью.

Определение тепловых потерь дома

На первом этапе необходимо правильно рассчитать объем тепла, который будет уходить через наружные стены, окна и двери здания. Работа теплоснабжения должна компенсировать эти потери и на основе полученных данных будут выполнены дальнейший расчет мощности циркуляционного насоса для отопления, котла и батарей.

Тепловые потери в доме

Определяющим параметром является сопротивление теплопередачи стен и оконных конструкций. Это обратный показатель теплопроводности материалов. Нельзя сделать подбор мощности котла отопления без знания этих величин. Поэтому перед началом расчетов следует узнать толщину стен и материал, из которых они сделаны.

Рекомендуется ознакомиться с содержанием СНиП II-3-79, а также СНиП 23-02-2003. В этих документах указываются нормативные значения сопротивления теплопередачи для различных регионов России. Зная их можно решить вопрос как рассчитать мощность радиатора отопления. Каждый материал обладает определенным значением теплопередачи. Данные о наиболее распространенных для возведения жилых зданий можно взять из стандартных таблиц.

Теплопередача материалов

Но этого недостаточно, чтобы в дальнейшем выполнить расчет мощности стальных радиаторов отопления. Дополнительно понадобится узнать толщину каждого типа материалов, используемых для строительства стен. Соотношение этой величины к коэффициенту теплопередачи и будет искомым значением:

R=D/λ

Где R – сопротивление теплопередачи; D – толщина материала; Λ – сопротивление теплопередачи.

В дальнейшем это будет использовано для расчета необходимой мощности котла отопления. Этот этап вычисления является рекомендуемым. Только узнав фактическое сопротивление стен можно определить номинальную мощность всей отопительной системы.

Зачем необходим расчет отопления

Определяющей задачей выполнения вычислений является оптимизация дальнейших расходов. Минимальная необходимая мощность котла отопления напрямую отразится на потреблении энергоносителя. Но экономия должна быть в пределах разумного.

Компоненты автономного отопления

Главное предназначение теплоснабжения – поддержание комфортного уровня температуры в жилых помещениях. На это влияет номинальная мощность чугунных радиаторов отопления, тепловые потери здания и параметры котла.

Для корректного подбора оборудования следует правильно рассчитать его параметры. Это можно сделать с помощью специализированных программ или самостоятельно, воспользовавшись определенными формулами.

Кроме этого специалисты рекомендуют рассчитать мощность котла отопления и других компонентов системы для следующего:

  • Планирование затрат на приобретение оборудования. Чем больше номинальная мощность котла или теплоотдача батареи — тем выше их стоимость. В итоге это скажется на бюджете всего мероприятия по обустройству теплоснабжения;
  • Корректное составление графика нагрузки на систему. Правильный расчет мощности насоса для отопления позволит узнать максимальную и минимальную нагрузку на оборудование при изменении внешних факторов – температуры на улице, в комнатах дома;
  • Модернизация системы. Если наблюдаются большие затраты на отопление, их снижение является первоочередной задачей для минимизации обслуживания. Для этого следует выполнить расчет мощности батареи отопления и других компонентов.

Определившись, что без вычисления основных данных нельзя приступать к закупке материала и комплектующих для обустройства теплоснабжения, следует выбрать методик расчетов. Сначала узнаются характеристики каждого компонента в отдельности – котла, насоса радиаторов. Затем их параметры вводятся в программу отопления и еще раз проверяются. По такой же методике делается расчёт отопления теплицы.

Как определить теплоотдачу батареи?

На этот параметр влияют три фактора:

  • Температура поступающего в трубу теплоносителя – чем она больше, тем выше отдача батареи.
  • Теплопроводность конструкционного материала батареи – чем она выше, тем меньше будет потерь при трансляции энергии теплоносителя в отапливаемую комнату.
  • Площадь внешней поверхности батареи – чем она больше, тем лучше. Ведь в большой радиатор можно залить огромную порцию теплоносителя, «добирая» калории не качеством, а количеством даже в случае недостаточной теплопроводности и низкой температуры воды или пара в батарее.

Все эти параметры увязываются между собой в особой формуле, разбавленной дополнительными коэффициентами, итогом которой будет искомая теплоотдача.

Подобным образом можно вычислить теплоотдачу любой заполоненной горячей водой емкости. Однако в случае с батареями можно обойтись и без излишне сложных вычислений. Ведь все три вышеописанных параметра давно стандартизированы и учтены конструкторами батарей отопления.

Поэтому типовая теплоотдача секций радиаторов или готовых панелей в большинстве случаев определяется по составленным производителем справочникам, где эта информация представлена в виде табличных данных. В итоге для определения отдачи батареи вам нужно знать только марку радиатора. А если вы испытываете затруднение с определением этой информации, то для грубого расчета будет достаточно информации о типе конструкционного материала.

Таблица теплоотдачи радиаторов отопления

Упрощенный табличный справочник по теплоотдаче радиаторов, составленный на основе четырех наиболее распространенных конструкционных материалов выглядит следующим образом:

Наименование материала Допустимое давление, бар Теплоотдача стандартной секции, кВт Допустимая температура теплоносителя, °C.

Чугун (серый или ковкий)
8-9
0,8-0,16
150

Конструкционная сталь
8-12
0,15
120

Биметаллический материал (стальной сердечник и алюминиевые ребра)
16-35
0,15-0,2
130

Алюминий
6-16
0,2
130

То есть даже по упрощенному справочнику видно, что теплоотдача чугунных радиаторов отопления оставляет желать лучшего, хотя именно такие батареи выдерживают максимальную температуру теплоносителя. И если ваш котел отдает в системе перегретый теплоноситель, то вам придется приобрести относительно «холодную» батарею из чугуна.

Однако если вам нужна умеренная прочность и максимальная теплоотдача радиаторов отопления – алюминиевые батареи подойдут для вашего дома с большей вероятностью, чем биметаллические или стальные изделия.

Более точная таблица, составленная с учетом распространенных моделей чугунных,  алюминиевых или биметаллических батарей выглядит следующим образом:

Наименование модели радиатора Теплоотдача секции, кВт
Алюминиевая батарея RoyalTermo Evolution 0,205
Биметаллическая батарея РИФАР Base 0,204
Алюминиевая батарея RoyalTermo Optimal 0,195
Чугунная батарея М-140-АО 0,175
Биметаллическая батарея RoyalTermo BiLiner 0,171
Чугунная батарея РД-90 0,137

Эти данные подтверждают высокую отдачу алюминиевых батарей, задекларированную в первой таблице. Такие радиаторы генерируют от 0,19 до 0,20 кВт тепловой энергии на секцию. Вместе с тем становится понятно, что теплоотдача биметаллических радиаторов отопления засвистит скорее от стараний производителя, чем от конструкционного материала. Ведь такие батареи генерируют от 0,17 до 0,2 кВт тепловой энергии на одну секцию.

Теплоотдача стальных радиаторов отопления панельного типа зависит от их габаритов. Например, радиатор размером 500х500 миллиметров излучает 0,8 кВт, а батарея с габаритами 500х1000 мм генерирует целых 2 кВт. Поэтому в таблицах для секционных радиаторов сведений о панельных стальных батареях просто нет. Информация о теплоотдаче таких конструкций идет в отдельном справочнике.

Это интересно: План участка 15 соток: рассмотрим обстоятельно

Рейтинг
( Пока оценок нет )
Аватар
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Tsk-service
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: